Simulation of Active Cardiac Dynamics with Orthotropic Hyperelastic Material Model
Please use this identifier to cite or link to this publication: http://hdl.handle.net/10380/1368 
Submitted by Ken c. l. Wong on 05212008.
Meaningful physical models are important for studying cardiac physiology, such as quantitative assessments of pathology via changes in model parameters, and recovering information from medical images. In order to achieve realistic deformation studies, an anatomically accurate cardiac model under the prolate spheroidal coordinate system has been proposed, which comprises the polezero constitutive law characterized by 18 material parameters. Nevertheless, the large number of parameters and the complicated mathematics under the curvilinear coordinate system make it difficult to implement and computationally expensive. In consequence, we propose a cardiac model under the cartesian coordinate system comprising the Costa law, which is tailored for medical image analysis. The Costa law is characterized by a strain energy function with only seven material parameters, but has been reported as the best among the five tested wellknown models in a comparative study, including the polezero law. In our framework, the penalty method for material incompressibility is used to avoid introduction of extra variables. Furthermore, we introduce a simple but novel boundary condition for enforcing cardiac specific boundary displacements under the cartesian coordinate system. With the active stresses provided by cardiac electromechanical models, and also the blood pressures acting as the natural boundary conditions on the endocardial surfaces, the physiologically plausible active deformation of the heart can be simulated. Experiments have been done on a cubical object to verify the correctness of the implementation, and also on a canine heart architecture to show the physiological plausibility of the cardiac model.
Reviews
Review of Wong et al. 'Simulation of Active Cardiac Dynamics with Orthotropic Hyperelastic Material Model'
by Anonymous on 07042008 for revision #1
expertise: 5 sensitivity: 4
Simulation of Active Cardiac Dynamics with Orthotropic Hyperelastic Material Model
by Anonymous on 06302008 for revision #1
expertise: 5 sensitivity: 4
Quick Comments
Resources
Download All 
Statistics more
Global rating:  
Review rating:  [review] 
Paper Quality: 
Information more
Categories:  Data Representation, Derivatives and Integrals, Image, Linear Algebra, Mathematics 
Keywords:  cardiac physiome model, cardiac dynamics, hyperelastic material models 
Toolkits:  VTK 
Export citation: 
Share
Linked Publications more
Diffeomorphic Demons Using ITK's Finite Difference Solver Hierarchy
by Vercauteren T., Pennec X., Perchant A., Ayache N.


A Distributed Software Framework for Robotic Surgery
by Staub C., Ning Y., Can S., Knoll A.

View license
Loading license...
Send a message to the author